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Abstract. In this paper, a new nonlinear robust adaptive decentralized control for a class of 
large-scale interconnected system (LS-Inter-SYS) with the uncertain parameters and 
disturbances is proposed. By using the mean-value theorem of the multivariate function, the 
cross terms and the uncertain parts of the LS-Inter-SYS are extended to the new state 
variables and adaptive tracking estimated, then the LS-Inter-SYS can be divided into 
separated subsystems. Simulation results show that the new decentralized robust adaptive 
control method is effective and has the characteristics of universality, simplicity and rapidity 
by introducing the K-Class functions and additional control variable.  

1 Introduction 

Because of the large scale, the high nonlinear, and the complicated structure, the nonlinear robust 
control of the large-scale interconnected system (LS-Inter-SYS), such as power system, aerospace 
system, robot system, chemical applications and telecommunication networks, etc., has attracted 
considerable attention[1]-[6]. In the LS-Inter-SYS, the subsystems often affect each other. When the 
distance between the subsystems is long, it is very difficult and complicated for the conventional 
centralized controller to collect the large status information. So it is necessary to realize the 
decentralized robust control of the LS-Inter-SYS. The decentralized control has the characteristics of 
avoiding the computational complexity, reducing economical costs involved in collecting 
information exchange among several distant systems, and enhancing the robustness when the 
interaction among, and guaranteeing the local system to be safe and operate at a failure mode.  

In [3], one decentralized L2-gain attenuation control method is presented, but in the considered 
class of LS-Inter-SYS, any two subsystems are interacted only via their outputs, note their complete 
states. The decentralized H∞ control method of LS-Inter-SYS with uncertainties and disturbances is 
studied in [4]-[5], but only the interconnected terms or parts of the LS-Inter-SYS are nonlinear, other 
parts is linear. These problems are also apparent in [6]-[8]. The adaptive control of the nonlinear 
LS-Inter-SYS is presented in [9]-[11].  
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Motivated by the above observation, in this paper, for a class of the universal LS-Inter-SYS with 
uncertain parameters and disturbances, a new recursive decentralized control method is presented. In 
the new L2-gain attenuation back-stepping adaptive control (L2-BSAC) method, because the K-Class 
functions and additional control variable are adopted, the state parameters convergence speed will be 
improved, and the calculation of the L2-gain attenuation will be simple. 

2 Nonlinear robust decentralized control based on mean-value theorem and back-stepping 

Considering the following interconnected system with the uncertain parameter and the 
disturbance: 

11122111 )22cos(   uxxxxx                             (1.1) 

22212122 )sin(3   uxxxxx                             (1.2) 
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Where 1  and 2  are the uncertain parameters; 1  and 2  are the limited-band white noise. 

We know the mean-value theorem of the multivariate function can be shown as: 
))(()()( 1201 XXXXX  fff                               (2) 

Where )( Xf  is the smooth function, n
n Rxx  T

1 ],,[ X ; 
0( )f X  is the gradient of the 

)( Xf  at 0X , ],[ 210 XXX . 

By the mean-value theorem of the multivariate function, we will transform the system (1) into: 
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Where 10 1  , 10 2  , 1 1 1 2 2 2 1sin(2 2 )x x x x      and 2 2 1 2 1 1 2cos( )x x x x     . 

Defining 2 2
1 1 1 12 (2 )V x     , by (3.1), yield: 
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Where 111

~ˆ    is the estimated value of 1 , 1

~  is the estimation error. 
By (4), we can obtain the control law and the adaptive law as follows: 
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Where 0)( 1111  cxfm  is the K-Class function, 1fu  is the additive control variable. 

Substituting (5) and (6) into (4), we obtain:  
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realize the nonlinear robust adaptive L2-gain attenuation control of the system (1.1). 
Defining 2 2

2 2 2 12 (2 )V x     , by (3.2), we obtain: 
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Where 222
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By (11), we can obtain the control law and the adaptive law as follows: 

2222222
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Where 0)( 2222  cxfm  is the K-Class function, 2fu  is the additive control variable. 

Substituting (12) and (13) into (11), we obtain:            
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law (17) and the adaptive (13) can realize adaptive L2-gain acontrol of the system (1.2). 

3 Simulation 

For system (1), when 1x  and 2x  are substituted by dxx 11   and dxx 22   in (6), (10), (13), (17), 1x  

and 2x  will track the instruction signal dx1  and dx2 . When 1021   , 121   , 

)10sin(201 tx d  , 2
1

2
1d11 05)(05 exxm  , )5sin(102 tx d  , 2

2
2

2d22 02)(02 exxm  , he curves of 1x , 

2x , 1u , 2u , 1  and 2  are shown as Figure 1 and Figure 2. 
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(a) 1x , d1x                                               (b) 2x , d2x   

Figure 1 the curves of the state variables 
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(a) 1u , 2u                                     (b) 1 , 2  

Figure 2 the curves of the control and adaptive law 
As Figure1 and Figure 2 shown, when m1 and m2 are K-Class functions, x1 and x2 can track x1d and 

x2d more rapidly. The simulation results show that new control method can not only stabilize the 
interconnected system, adaptive to the uncertain parameters, but also attenuate the disturbance. 
Comparing with the traditional lower-triangular system structure and back-stepping method, the 
structure of the system (1) is more universal and the new control method has the characteristics of 
generality, simplicity, high efficiency and etc. 

4 Conclusions 

In this paper, a new recursive decentralized control method is presented. By using the mean-value 
theorem of the multivariate function, the cross terms and the uncertain parts of the LS-Inter-SYS are 
extended to the new state variables, the LS-Inter-SYS can be decomposed into many subsystems. For 
the converted subsystem, a new L2-gain attenuation back-stepping adaptive control (L2-BSAC) 
method is presented. In the new L2-BSAC, mi,j is the K-Class function, and the calculation process of 
the L2-gain attenuation is simplified by introducing into the new control variable. Simulation results 
show that the new control  method can not only decentralized stabilize the large-scale interconnected 
system, adaptive to the uncertain parameters, but also attenuate the disturbances,. 
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